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Abstract.
A new efficient multilevel upscaling procedure for single-phase saturated flow
in porous media is presented. While traditional approaches to this problem have
focused on the computation of an upscaled hydraulic conductivity, here the coarse-
scale model is created explicitly from the fine-scale model through the application
of operator-induced variational coarsening. This technique, which originated with
robust multigrid solvers, has been shown to accurately capture the influence of
fine-scale heterogeneous structure over the complete hierarchy of coarse-scale
models that it generates. Moreover, implicit in this hierarchy is the construction
of interpolation operators that provide a natural and complete multiscale basis for
the fine-scale problem. Thus, this new multilevel upscaling methodology is similar
to the Multiscale Finite Element Method (MSFEM) and, indeed, it attains similar
accuracy on a variety of problems; yet it is approximately15 times faster.

1. Introduction

Although the increasing power of modern computer hard-
ware enables effective simulation of many single-scale and
single-component systems, there exist fundamental mathe-
matical and algorithmic challenges in the effective simula-
tion of multi-scale and multi-component systems. In partic-
ular, a critical underlying problem in the numerical modeling
of flow in porous media is the need to resolve the multiscale
structure of the subsurface environment. For example, the
length scales observed in sedmintary lamine range from the
millimeter scale upward, while the simulation domain may
be on the order of several kilometers. As a result, fully re-
solved simulations are computationally intractable, yet the
fine-scale variations of the model parameters (e.g., structure
and orientation of laminae) significantly affect the properties
of the solution at all scales.

Many methods have been proposed to address the com-
plication of fine-scale variation in the material parameters
of a porous medium. If certain structural information of the
medium is known, then it may be possible to derive a use-
ful coarse-scale model using simple averages. In the case of

mean uniform flow, for example, the effective permeability
of a medium is bounded between the harmonic and arith-
metic averages of the fine-scale permeability, as shown in
Cardwell and Parsons[1945], along with conditions on the
media and flows where these bounds are achieved. The geo-
metric average (Warren and Price[1961]) and certain power
averages (Desbarats[1992a]) provide reliable approxima-
tions of the effective permeability if the fine-scale variation
in the permeability field satisfies certain conditions. Sim-
ilarly, in the case of nonuniform flow,Desbarats[1992b]
demonstrates that a weighted geometric average provides
accurate effective transmissivities for low to moderate vari-
ances of the log-transmissivity field. However, none of these
simple averages accurately capture coarse-scale dynamics
of an arbitrary medium under arbitrary flow conditions. In
more complex problems, such as transient multiphase flow,
coarse-scale models cannot be completely decoupled from
the fine-scale dynamics.

The purpose of this paper is to introduce a new multi-
level upscaling algorithm, based on variational principles,
that accurately and efficiently captures the effects of a mul-
tiscale medium. The fine-scale permeability is not explicitly
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2 MacLACHLAN and MOULTON

averaged, neither through a simple average chosen a priori,
nor through the solution of local problems as inDurlofsky
[1991]. In fact, no solution of any fine-scale problems is
required by the method. Instead, variational multigrid prin-
ciples (cf. Bank et al.[1985]) are used to construct a self-
consistent hierarchy of coarse-scale models directly from the
given fine-scale model. Moreover, the solution of a coarse-
scale model yields information at more than just that scale,
as important finer-scale information is preserved through the
hierarchy.

This multilevel approach yields more information than
defining equivalent or effective permeabilities over coarse-
scale blocks, regardless of whether the coarse-scale perme-
abilities are calculated using simple averages, as above, or
with more sophisticated techniques such as the upscaling of
Durlofsky[1991] andHe et al.[2002] that relies on the solu-
tion of local fine-scale problems. These techniques, referred
to as Laplacian methods in the review byWen and Ǵomez-
Hernández[1996], are more accurate, in general, than sim-
ple averages. However, the linear scaling of multigrid iter-
ative solvers for elliptic problems (Braess and Hackbusch
[1983]) implies that solving the necessary local fine-scale
problems is asymptotically no less expensive than solving
the global fine-scale problem, unless there is some periodic
behavior in the fine-scale permeability that can be exploited.
Moreover, such an approach yields only a coarse-scale repre-
sentation of the flow properties, potentially missing impor-
tant dynamics necessary to accurately simulate multiphase
flows. Comparisons with the Laplacian upscaling ofDurlof-
sky [1991] have shown that the multilevel upscaling pro-
posed here is significantly more accurate, as well as com-
putationally more efficient (MacLachlan[2004]).

In this paper, we present a comparison with the multi-
scale finite element method (MSFEM), which was first pro-
posed inHou and Wu[1997] and later analysed byHou et al.
[1999]. This method is much closer in both approach and ac-
curacy to the multilevel upscaling ideology considered here.
In addition, its application to the simulation of flows in het-
erogeneous porous media is being actively pursued by the
community (Ye et al.[2004]). In the MSFEM, multiscale dy-
namics are captured through the computation of local, low-
energy basis functions used to reduce the problem to a cho-
sen coarse scale. The explicit construction of these basis
functions accurately represents fine-scale dynamics of the
flow; however, this comes at the cost of solution of a set of
local fine-scale problems, resulting in an overall cost similar
to that of solving the global fine-scale model.

The multilevel upscaling algorithm developed here at-
tains accuracy comparable to the MSFEM approach, but at
a significantly lower cost. Both approaches are variational,
representing the low-energy components of the model on

coarse scales, preserving the minimization properties of the
fine-scale finite element discretization. The recursive ap-
proach of a multigrid framework, however, allows explicit
coarsening of the fine-scale problem without performing any
local solves. Instead, physical heuristics are used to identify
local characteristics of low-energy error and represent such
components on coarser scales.

This paper proceeds as follows. Section 2 introduces the
continuum-scale mathematical model of saturated, single-
phase flow through porous media and the finite-element dis-
cretization that we consider here. In Section 2.1, we discuss
the details of variational multigrid, followed by a descrip-
tion of the multilevel upscaling algorithm in Section 2.2. A
periodic model problem is discussed in Section 3, where the
intuition gained from a simple medium is used to clarify the
approach. More complex media are considered in Section 4.
Conclusions are presented in Section 5.

2. Background and Method

We consider two-dimensional single-phase saturated flow
through a porous medium whose hydraulic conductivity,
K(x), is specified on a fine-scale over the domain of interest,
Ω. This flow may be modeled at the continuum scale using
Darcy’s law and conservation of mass,

q(x) = −K(x)∇h(x), (1)

∇ · q(x) = Q(x), (2)

for all x ∈ Ω. Here,h(x) is the hydraulic head,q(x) is
the Darcy flux, andQ(x) represents any external sources or
sinks of fluid. The conductivity,K(x), is a positive scalar
or a positive definite tensor that is assumed to be piecewise
smooth with jump discontinuities at interfaces. We consider
both no flow boundary conditions (homogeneous Neumann),

q(x) · n = 0 , ∀x ∈ ΓN , (3)

and those of prescribed hydraulic head (Dirichlet).

In the following discussion, we work with this model in
its second order form,

−∇ · [K(x)∇h] = Q(x) (4)

from which a fine-scale discrete model may be obtained with
bilinear finite elements on a uniform rectangular mesh that
resolves the variation inK(x). Specifically, in the standard
Galerkin finite-element formulation, we write

h(x) =
N∑

i=1

hiφi(x), (5)

where{φi(x)} are the nodal basis functions associated with
the rectangular mesh ofN nodes. Substitution of (5) into the
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weak form of (4) results in a discrete problem that may be
expressed as a sparse linear system of equations,

Ah = Q, (6)

whereh = (h1, . . . , hN )T andQ = (Q1, . . . , QN )T . The
elements of the large, sparseN ×N matrixA are given by

aji =
∫

Ω

(K(x)∇φi(x)) · ∇φj(x)dΩ. (7)

Note that sinceK(x) is everywhere symmetric and positive-
definite, so isA.

2.1. Variational Multigrid Coarsening

A fully resolved mesoscale simulation of flow through
strongly heterogeneous media is likely to remain intractable
for some time. Thus, an approach is needed to accurately
and efficiently capture the influence of fine-scale structure
over a hierarchy of coarse-scale models. Many key ingre-
dients of this hierarchy are found in existing multilevel it-
erative algorithms, such as multigrid. Specifically, these
methods achieve their efficiency through the recursive use
of successively coarser discrete problems (i.e., a hierarchy
of coarse-scale discrete models), in conjunction with a com-
plementary smoothing iteration. In fact, these methods have
been shown to scale optimally withN (i.e., solution cost
grows only linearly withN ) for a broad class of problems,
suggesting that scale interaction is well characterized by this
approach. Of particular interest here is a class of robust
black boxmethods that use the fine-scale discrete model to
construct, through a variational principle, the successively
coarser coarse-scale operators. Specifically, we use the fun-
damental components of theblack box multigrid(BoxMG)
algorithm (Dendy [1982]) in our multilevel upscaling ap-
proach.

An excellent introduction to multigrid methods is given
by Briggs et al.[2000]. Here, it is sufficient to highlight the
key steps in the multigrid solution of Equation (6), which are
shown schematically in Figure 1 and described as follows:

• the residual on a particular grid is smoothed
(i.e., it must be well approximated on a coarser grid)

• the residual is thenrestrictedto the coarser grid
• repeat recursively until the coarsest grid is reached
• solve on the coarsest grid
• interpolatea correction to the next finer grid
• smooth the new residual
• repeat to undo the recursive coarsening

We note that the residual of Equation (6), for thejth approx-
imation of the hydraulic headhj is simplyrj = Q−Ahj .

From this description, it is apparent that the efficiency of a
multigrid algorithm is tightly coupled to the effectiveness of
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Figure 1. Schematic of a V-cycle multigrid iteration.

the smoother (although this component is beyond the scope
of this discussion). Smoothing on coarse levels requires a
representation of the fine-scale operator on these levels; we
utilize these operators in the upscaling algorithm that follows
and, thus, focus here on their specification.

First, consider a nested sequence of uniform rectangular
meshes labeledk = 1, . . . , kf , wherek = 1 denotes the
coarsest grid andk = kf denotes the finest grid. A criti-
cal aspect of creating a multigrid algorithm is to define the
hierarchy of coarse-grid operators,

Ak – discrete operator on gridk, k = 1, 2, . . . , kf − 1

as well as the intergrid transfer operators,

P k
k−1 – interpolation operator, grid (k − 1) → grid k

Rk−1
k – restriction operator, grid k → grid (k − 1)

Variational coarsening offers one means of definingAk−1 in
terms ofAk, Rk−1

k , andP k
k−1. In particular, restating the

discrete linear system as an equivalent minimization prob-
lem, and then restricting this minimization to the range of
interpolation yields (cf.Nicolaides[1979],Brandt [1984]),

Ak−1 =
(
P k

k−1

)∗
AkP

k
k−1 , (8)

and, thus, we takeRk−1
k =

(
P k

k−1

)∗
.

Finally, to complete the specification of a variational
coarsening algorithm, we must define the interpolation oper-
ator. In fact, the choice of the interpolation operator is crit-
ical to the robustness and efficiency of the resulting multi-
grid algorithm. For example, a naive choice such as bilin-
ear interpolation erroneously assumes that the gradient of
the hydraulic head is continuous and generates a coarse-
scale model in which the upscaled hydraulic conductivity
is simply an arithmetic average of the fine-scale conduc-
tivity. Thus, it is not surprising that bilinear interpolation
leads to a fragile multigrid algorithm that is not suitable for
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strongly heterogeneous media. Instead, a significantly bet-
ter approach is to use entries in the fine-scale discrete op-
erator to define an interpolation that preserves certain fun-
damental properties of the solution. This technique was
dubbed operator-induced interpolation byDendy[1982] and
was shown byMoulton et al.[1998] to approximately en-
force the continuity of the normal component of the Darcy
flux across interfaces.

2.2. The Multilevel Upscaling (MLUPS) algorithm

The variational coarsening presented in Section 2.1 gen-
erates a complete hierarchy of coarse-scale models,Ak, with
very useful properties. For example, it preserves the sym-
metry and definiteness of the fine-scale operator,Akf

, and,
at each level, minimizes the error in the range of the inter-
polation (cf. Nicolaides[1979], Brandt [1984]). More im-
portantly for upscaling applications, it implicitly generates
multiscale basis functions (Grauschopf et al.[1997]). To
clarify this property, denote, on each scalek, the set of basis
functions{ψk

j }, which we define recursively from the finest
scale. On the scale of discretization, gridkf , the basis func-
tions are simply the bilinear basis functions used in Equation
(5),ψkf

j = φj , for all fine-scale nodesj. Given an operator,
Ak, on levelk, generated by basis functionsψk

j ,

(Ak)ij =
∫

Ω

〈
K(x)∇ψk

j ,∇ψk
i

〉
dΩ, (9)

denote the elements of the interpolation asP k
k−1 = pij , such

that substitution in (8) gives(
Ak−1

)
ij

=
∑
l,m

plipmj

∫
Ω

〈K(x)∇ψk
m,∇ψk

l 〉dΩ (10)

=
∫

Ω

〈
K(x)∇

(∑
m

pmjψ
k
m

)
,∇
(∑

l

pliψ
k
l

)〉
dΩ.

Hence, if we define the new multiscale basis functions on
levelk − 1 as

ψk−1
j =

∑
m

pmjψ
k
m , (11)

we may write the discrete coarse-grid operator in the form(
Ak−1

)
ij

=
∫

Ω

(
K(x)∇ψk−1

i ,∇ψk−1
j

)
dΩ . (12)

Therefore, interpolation provides not only mappings be-
tween grid function spaces, but may also be viewed as part
of the discretization on coarse grids. It is in this way that
the variational definition of the coarse-grid operator may be
viewed as a discrete method for generating a hierarchy of
coarse-scale discrete models that accurately capture the in-
fluence of the fine-scale heterogeneous structure.

Our new multilevel upscaling (MLUPS) algorithm uses
the components of the black box multigrid algorithm in the
following way:

1. Create a conforming bilinear discretization of (4) on
the finest grid, assuming homogeneous Neumann boun-
dary conditions.

2. Perform operator-induced variational coarsening to
construct the interpolation operators,P k

k−1, and the
hierarchy of coarse-scale operators,Ak, according to
Equation (8)

3. Select a coarse-scale,k = kc, on which to solve the
coarse-scale approximation of Equation (6).

4. Restrict the fine-scale boundary conditions and the
fine-scale source to levelkc, then use black box multi-
grid to solve this coarse-scale problem.

5. Interpolate the solution to the finest grid using the
multiscale basis functions defined by Equation (11).

3. Periodic Media

We first apply the MLUPS algorithm (Section 2.2) to a
model problem with a two-scale periodic variation in the hy-
draulic conductivity. Specifically, we consider a structured
pattern of square inclusions of a high conductivity medium
against a homogeneous background, as depicted on the left
of Figure 2. The conductivity is constructed by a four by four
tiling of the unit cell shown on the right of Figure 2, where
theK(x) = 1000 inside the dark region andK(x) = 1 in
the background medium. This regular pattern provides an
ideal setting to develop intuition into the MLUPS approach
as the resulting multiscale basis functions clearly display the
influence of this structure on the flow. Results for randomly
generated anisotropic heterogeneous media are presented in
the following section.

1

0
5/16

5/16

11/16

1

111/160

0

1

0

Figure 2. Periodic conductivity field.
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One approach to visualizing the MLUPS multiscale basis
functions is to associate each basis function with a coarse-
grid node on each level of the multigrid hierarchy. In this
case, as we traverse the hierarchy to coarser scales, the sup-
port of a basis function grows and, hence, its shape captures
an increasing region of fine-scale structure. In our current
work with BoxMG, we use standard coarsening, which takes
half of the points in each coordinate direction at each level.
Thus, the number of points is reduced by a factor of four on
each level and, moreover, the support of the multiscale basis
function grows in area by a factor of four with each level.

However, this approach is not particularly informative for
this model problem because it takes too many levels for the
support of the coarse-scale basis functions to cover interest-
ing features of the conductivity field. Instead, we examine
how the information in the multigrid interpolation operators
compounds from the coarsest scales up to the finest. Figure 3
shows this development on the coarse scales, where we see
the evolution of the basis function centered at( 1

2 ,
1
2 ) from

the bilinear basis function normally used on any scale to the
effective MLUPS basis function for these scales in Figure 4.

The MLUPS basis function exhibits many features ap-
propriate for this flow. In the regions whereK(x) is large,
we expect small gradients of head relative to those in the
background medium (so thatK∇h is relatively constant and
∇ · K∇h = 0); the basis function reflects this with plateaus
in its contours. Outside these regions, we do not know, a pri-
ori, what to expect of the hydraulic head for a general flow
situation, and so bilinear tendencies are retained to best fit
general heads on the coarse scale.

To demonstrate the accuracy of the MLUPS basis func-
tions, we consider Equation (4), subject to no-flow boundary
conditions on the top and bottom edges, with headsh = 1
alongx = 0 andh = 0 alongx = 1. We then compute errors
in both the hydraulic head and the average normal flux rela-
tive to the fine-scaletrue solution obtained on a256 × 256
with standard bilinear finite elements. Specifically, the er-
rors in the head are measured in the discrete vector norms
approximatingL2(Ω),

‖e(h)‖2 =

(
1
N

N∑
i=1

e(h)i

) 1
2

, (13)

whereN is the number of nodes on the fine mesh, and
L∞(Ω),

‖e(h)‖∞ = max
i

|e(h)i| . (14)

Similarly, to quantify the accuracy of the Darcy flux we con-
sider the average flux through the domain,

qx =
∫ 1

0

(q · x̂)dy =
∫ 1

0

[
−K(x, y)∇h(x, y) · ( 1

0 )
]
dy,

(15)

Figure 3. Coarse-scale basis functions for the periodic prob-
lem.

Figure 4. Fine-scale basis function for periodic problem

and define the corresponding discrete vector norms approxi-
matingL2([0, 1]),

‖e(qx)‖2 =

(
1
Nx

Nx∑
i=1

e(qx)2i

) 1
2

, (16)

whereNx is the number of nodes in the x-direction on the
fine mesh, andL∞([0, 1]),

‖e(qx)‖∞ = max
i

|e(qx)i|. (17)

These results are summarized in Table 1, where the compu-
tational fine-scale ranges from64× 64 elements (a standard
bilinear discretization) to8× 8 MLUPS elements. Note that
as the number of degrees of freedom on the computational
scale decreases, we see increasingL2 errors in both head and
average flux. TheL∞ error in pressure, however, remains
relatively constant. This max-norm error is attained along



6 MacLACHLAN and MOULTON

Table 1. Errors in flow properties for periodic conductivity

Grid ‖e(p)‖2 ‖e(p)‖∞ ‖e(qx)‖2

642 4.29× 10−4 4.54× 10−3 7.45× 10−3

322 5.52× 10−4 3.92× 10−3 2.29× 10−2

162 1.04× 10−3 4.02× 10−3 7.16× 10−2

82 1.54× 10−3 6.62× 10−3 3.67× 10−2

lines of constanty, midway between the high-conductivity
inclusions, where the MLUPS method tends to undershoot
the exact solution producing a small cusp in they-direction
instead of the smooth but rapidly varying profile of the fine-
scale conductivity.

To better understand this performance, recall that we dis-
cretized Equation (4) with finite elements, and, specifically,
that the solution of the computational fine-scale equations is
the same as that of the minimization problem,

h = argmin
h̃∈V

∫∫ (
1
2
(K∇h̃) · ∇h̃−Qh̃

)
dx.

The MLUPS method may be viewed as picking a subset of
the space,V, over which to perform the minimization. The
natural weighting in the minimization functional, however,
emphasizes errors in the regions whereK(x) is large and/or
the gradient of the hydraulic head is large. In a sense, this
forces MLUPS to choose basis functions that allow small
errors in the head in the background medium so that it can
match the head more accurately in the high conductivity re-
gions. Such an approach is consistent with the fine-scale
finite element discretization and the variational framework
of the Galerkin Finite Element Method and is thus viewed
as a feature of the method.

4. Anisotropic Heterogeneous Media

While the example in Section 3 is useful as an introduc-
tion to the MLUPS methodology, it does not represent typ-
ical conductivity fields for which coarse-scale models are
needed. A more realistic representation may be obtained
with a random field generator. Thus, in this section, we fo-
cus on realizations of heterogeneous layered media, and ex-
amine the effect of such layering on the performance of the
MLUPS method. Specifically, we consider a series of prob-
lems in which the hydraulic conductivity,K(x), is gener-
ated using the GSLIB software package (Deutsch and Jour-
nel [1998]). The computational fine scale is selected as a
256 × 256 element grid, and on each element the hydraulic
conductivity is taken to be a constant. A principle axis of
statistical anisotropy is selected between 0 and 90 degrees,
relative to the positivex-axis, and a conductivity field is gen-

erated such thatlog10(K(x)) is normally distributed with
mean zero and variance 4, with correlation lengths of 0.8
along the principle axis and 0.04 in the direction orthogonal
to this axis.

Samples of these conductivity fields are shown in Fig-
ure 5, for the angles to the principle axis of30◦ on the left
and 45◦ on the right. The grayscale in these figures rep-
resents a range in conductivity from approximately10−3

(white) to 103 (black). Notice the strong layering that re-
sults from the significant difference in the correlation lengths
along and orthogonal to the chosen axis. The MLUPS basis
functions for the node at( 1

2 ,
1
2 ) after upscaling by a factor

of 32 in each direction are shown in Figure 6 for30◦, on the
left, and45◦, on the right. These basis functions strongly
reflect the fine-scale features of the conductivity. Most no-
ticeable is the rotation in the features to match the angles
of the layering in the conductivity, visible along the lower-
right edges of the basis functions. Notice also how these ba-
sis functions strongly represent the expected behavior of the
head for general flow conditions, with relatively small gra-
dients in regions of large conductivity and relatively large
changes in regions where the conductivity values are small.

Because of the similarity in approach of the two methods,
we compare the results generated by the MLUPS method
with the MSFEM ofHou and Wu[1997], andHou et al.
[1999]. The MSFEM method considers a given fine compu-
tational scale and explicitly creates basis functions that vary
on that scale to use in the coarse-scale discretization. These
functions are constructed by solving local fine-scale prob-
lems with boundary conditions especially chosen to form
coarse-scale nodal basis functions. In this study, we used
the oscillatory boundary conditions advocated in [Hou and
Wu, 1997, Section 2.2], as our tests with the alternative (and
more expensive) technique of oversampling did not yield any
gain in accuracy.

Once again we consider measures of error in both the
head and average normal flux for uniform mean-flow from
left to right across the domain. No-flow boundary condi-
tions are applied at the top and bottom, while hydraulic head
is prescribed on the left and right edges, withh(0, y) = 1
andh(1, y) = 0. The computational fine-scale discretiza-
tion on the256× 256 element mesh uses the standard bilin-
ear Galerkin finite element discretization (BLFEM) outlined
in Section 2. An overresolved calculation on a2048× 2048
element mesh is used to represent the true solution of this
problem, and the BLFEM, MLUPS, and MSFEM solutions
are represented at the nodes of this mesh through their basis
function representations. Errors in both the hydraulic head
and the average flux are calculated relative to the fine-scale
solution, measured using the discrete vector norms defined
in Equations (13) through (17).
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Figure 5. Conductivity field for30◦ axis of anisotropy (left) and45◦ (right).

Figure 6. MLUPS basis function for the node( 1
2 ,

1
2 ) on an8× 8 grid for 30◦ axis of anisotropy (left) and45◦ (right).

Plots of the hydraulic head errors for the BLFEM, MLUPS,
and MSFEM computations on 5 degree steps of the orienta-
tion of the conductivity layers are shown in Figure 7, with
theL2(Ω) given by Equation (13) on the left, and theL∞(Ω)
given by Equation (14) on the right. The errors for the bi-
linear solution on the256× 256 element grid (BLFEM) are
presented here as a baseline for the upscaling methods. In
some sense, these represent the best we can expect in the
upscaled results, illustrating the error in the solution of the
computational fine-scale model. In these plots, we see that
the MLUPS and MSFEM methods produce solutions with
errors of similar magnitude for these test problems. The
MLUPS technique appears to be slightly more accurate for
small angles in the orientation of the conductivity layers, al-
though such a generalization would not be possible without
large ensemble averages that were not part of this study. For
larger angles, the errors of the two methods are comparable,

with moderate oscillation in the magnitude of the errors for
both techniques.

Plots of the errors in average normal flux, integrated
along lines of constantx, are shown in Figure 8. The
L2([0, 1]) norm of average normal flux is computed accord-
ing to Equation (16) and is shown on the left, while the
L∞([0, 1]) is given by Equation (17) and is shown on the
right. Once again we note that the overall similarity in ac-
curacy between the two methods in these error measures, al-
though we see relatively large excursions in computed fluxes
for the MSFEM solution for small angles. In general, sig-
nificant fluctuation withx in the computed average fluxes
was seen with the MSFEM procedure, whereas the MLUPS
computations were more consistent. This can be seen in the
closer relationship between theL2 andL∞ norms of the flux
for the MLUPS method.

Given the similar accuracy of these two methods, the
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Figure 7. L2([0, 1]2) (left) andL∞ errors in the hydraulic head for different angles of the principle axis.
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Figure 8. L2([0, 1]) error (left) andL∞ error (right) in the average normal flux for different angles of the principle axis.

MLUPS methodology is much more attractive due to its
lower computational cost. Specifically, the MSFEM com-
putation requires three fine-scale solves per coarse-scale el-
ement to create a full set of basis functions (Hou and Wu
[1997]). With the existence of optimal solvers such as multi-
grid for this class of problems, this setup phase has a cost
that is proportional to the cost of solving the computational
fine-scale system. In fact, using BoxMG (Dendy[1982]) to
solve the256 × 256 element computational fine-scale prob-
lems, solution time ranges from approximately 1 to 2.5 sec-
onds on a system with a 1.6 GHz Athlon processor. This
variation in solution time is due to the variations in the re-
alizations of the conductivity across different angles, result-
ing in a degradation in the smoothing rate for some config-
urations, and hence, ultimately a degradation in the conver-
gence of BoxMG. The corresponding MSFEM calculations
for upscaling to an8 × 8 coarse computational-scale mesh
consistently required1.8 seconds of CPU time on the same
machine. In contrast, the MLUPS calculation consistently
needed only0.12 seconds of CPU time, one-fifteenth of the

MSFEM cost. Because the coarse element-scale computa-
tion for MSFEM, and the computational coarse grids were
so small, the MSFEM and MLUPS approaches did not see
the same fluctuation in CPU time as the fine-scale computa-
tions did.

5. Conclusions

We demonstrate the capability of the multilevel upscal-
ing methodology to efficiently generate a complete hierarchy
of self-consistent coarse-scale models, as well as the cor-
responding multiscale basis functions, thereby facilitating
the computation of coarse- and fine-scale properties of the
solution. In this study, our multilevel upscaling algorithm
demonstrated accuracy comparable to the popular Multi-
scale Finite Element Method but at significantly lower com-
putational cost. Moreover, it provides a natural setting for
adaptivity, error estimation, and extensions to more complex
regimes such as unsaturated, multiphase, and reactive flows.
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